集成硅光传感器时代,「意子信息」想用纳米光子晶体结合MEMS做出了极高精度的光量子传感器
采访:刘源、李子月作者:刘源、李子月
编辑:石亚琼
**
传感器种类太多,我们以惯导IMU为例来说明,惯导IMU分为三类:
1. 机械类IMU:最古老的IMU类型,精度高,但昂贵、体积大,现在市场上比较少见
2. 光学类IMU,核心部件是“激光光路”或“光学谐振腔”:又分为激光RLG、光纤FOG、硅光IMU(本文所述新产品ACA)。光学类精度高,但RLG和FOG都只能作为陀螺仪,价格昂贵且体积偏大。
3. MEMS压电/电容IMU:其中,MEMS工艺的电容IMU虽然成本低、体积小,但精度差,测量带宽有限。
这几类IMU应用场景各有不同,性能指标例如零偏稳定性、比例因子、随机游走、功耗、体积、带宽、冲击振动、MTBF等指标各有千秋。可分为消费级、工业级和防务/航空级。基于MEMS的低端消费级应用包括AR、可穿戴电子设备、室内导航,单位价格在1-5美元之间。高端工业级应用包括自动驾驶车辆、机器人、物联网、无人机和电影工业,价格在1000美元以内,这两个级别方向的公司包括Honeywell、Xsens、Analog Devices、Bosch、TDK InvenSense和life.augumented等。大尺寸防务级应用价格则将高于10万美元,此领域公司包括Honeywell、KVH、Northrop Grumman和emcore。
https://p9.toutiaoimg.com/large/pgc-image/SITvD5U6PIQ8fG
常见惯导IMU产品图片
如果用硅基MEMS工艺结合纳米光学谐振腔,并且在晶圆上就将光路和其他硅基器件直接集成在一起,这就是集成硅光MEMS传感器。它有四个跨时代的意义和好处:
1. 精度高,光学精度
2. 尺寸微小,功耗也低,因为光学谐振腔通过集成硅光工艺已经缩小到数微米级别了
3. 低成本,量大,因为所需硅基半导体工艺成熟,成本优势明显,不涉及到先进制程,很多Foundry厂都能够生产
4. On-chip,该技术路径最终实现不需要分别封装成多个芯片或分立器件再独立安装
这将对传统大部分传感器,例如IMU、陀螺仪、磁力计等,和光学相控阵,都产生颠覆性影响。但为什么这么有用但一直没出现这样的新产品?因为“技术难点,也就是最关键的,就是如何优化设计使数微米级别的集成光腔可以和满足相应性能需求的MEMS结构高效耦合,并且可以通过成熟硅光光刻线量产,且与MEMS工艺相结合,做到低成本量产性的同时保持高性能测量能力。”-加州理工学院应用物理与量子工程博士罗杰如此说到。罗杰曾在Science和Nature Physics上发表光量子芯片论文,参与美国能源部先进量子测试平台并领导超导量子计算芯片研发,并在量子通讯和量子计算领域掌握三项美国专利。
加州理工一直在进行这方面的研究和实用,例如获得2017年诺奖的激光干涉引力波天文台就是运用了相似的光-机械效应,加州理工在将光-机械耦合技术小型化到芯片上也走在世界前沿。罗杰的两位小伙伴,任恒江和杨帆也一直进行着这方面的研究,任恒江为加州理工学院电子工程与量子工程博士,其研发的机械谐振腔打破了量子相干性世界纪录,曾任职于新加坡高性能计算研究所,并在量子通讯和量子计算领域掌握2项美国专利。杨帆为伊利诺伊大学香槟分校航空航天工程博士,熟悉设计制造MEMS元件。Stillwell奖金获得者,从事纳米材料和器件性质研究并发表多篇高质量论文,曾任伊利诺伊商业咨询公司高级经理。
现在这三位加州理工和伊利诺伊的博士们准备将集成硅光传感器商业化,批量生产广泛应用,应用场景包括:地震和油气资源探索、机械震动监测、智能预测性维护(CBM)、驾驶状态监测与评估、先进无人机/机器人、高级别自动驾驶、复杂环境高精度导航、先进AR/VR应用、电影及运动员姿态捕捉和监测、光学相控阵、激光雷达等。在2019年,三位创始人在美国特拉华成立了公司“Anyon Computing”,中文名“意子信息”,专注于集成硅光MEMS传感器硬件以及相关技术应用量子芯片的研发和销售。
https://p6.toutiaoimg.com/large/pgc-image/SITvD6RCAaHnBU
光量子惯性传感器IMU ACA-101
意子信息的第一款产品取名为“光量子惯性传感器IMU ACA-101”,精度可达1μg Hz-1/2。是常见工业级IMU精度百倍左右。带宽>20k Hz,将有效带宽扩大百倍以上。ACA-101测量角度精度类比激光RLG的精度略差一点,但激光RLG售价高达数万人民币,而ACA-101成本只有一百元人民币,内部关键部分2毫米长,2毫米宽,几十微米深,光电封装后体积16立方厘米左右。
https://p6.toutiaoimg.com/large/pgc-image/SITvD7P5kAgFmn
ACA-101未封装照片
罗杰介绍它的核心是20微米长、2微米宽、几十微米深的光学谐振腔。简单讲,它的测量原理通过测位移->反算惯性力->再反算加速度,类似弹簧秤:核心器件包含一个微质量块(Proof-Mass),通过机械(MEMS)结构悬浮,光腔的一端固定、另一端和Proof-Mass相连,在外界加速度的作用下Proof-Mass产生微小的位移。微小位移改变了光强的光学共振的频率,从而可以准确测量该微小位移,进而获得准确的加速度(或者通过科里奥利力原理测量角速度)。该光学谐振腔目前能做到飞米级分辨率,10^-15米,的位移测量,也就是一个质子或中子的直径,已经达到位移测量量子极限。所以能够做到高分辨率、高精度、低底噪声的加速度测量。
https://p6.toutiaoimg.com/large/pgc-image/SITvD8HB4t7fq0
ACA-101核心光学部分电镜扫描
https://p5.toutiaoimg.com/large/pgc-image/SITvD8yDb9arMz
弹簧秤原理图
https://p26.toutiaoimg.com/large/pgc-image/SITvDzE9jf7077
ACA-101原理图
罗杰告诉36氪记者,硅光在通信方面的应用在30年前就已经开始了,主要应用于通信设备基站、中继器。近几年,集成硅光的其他应用开始兴起,包括集成硅光传感与集成硅光计算等。ACA-101第一批demo是用电子束曝光机做出来的,大规模批量生产需要把产线移植到DUV光刻机,意子将与先进硅光代工厂共同推进相关制程在193纳米光刻线上的实现,pdk定义,design rule定义等等。届时,各大晶圆厂商都能进行光量子传感器的生产了。
https://p6.toutiaoimg.com/large/pgc-image/SITvE06YsSa8B
集成硅光传感器适用行业
硅光芯片产业在过去5年内翻了数倍,在未来5-10年内将达到顶峰,市场体量将达200-300亿美元量级。随着越来越多集成硅光产品的出现,整个产业共同推动相关代工厂在流片工艺和紧凑封装上的进步,高性能硅光芯片和相关元件的低成本生产和小型化方面将获得极大的推动。期待越来越多的消费级产品能用到硅光惯性传感器。
https://p3.toutiaoimg.com/large/pgc-image/SITvE2W9TAA9mr
集成硅光传感器市场体量
页:
[1]